Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 121: 111836, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579474

RESUMO

To some extent, cell therapy for myocardial infarction (MI) has supported the idea of cardiac repair; however, further optimizations are inevitable. Combined approaches that comprise suitable cell sources and supporting molecules considerably improved its effect. Here, we devised a strategy of simultaneous transplantation of human cardiac progenitor cells (CPCs) and an optimized oxygen generating microparticles (MPs) embedded in fibrin hydrogel, which was injected into a left anterior descending artery (LAD) ligating-based rat model of acute myocardial infarction (AMI). Functional parameters of the heart, particularly left ventricular systolic function, markedly improved and reached pre-AMI levels. This functional restoration was well correlated with substantially lower fibrotic tissue formation and greater vascular density in the infarct area. Our novel approach promoted CPCs retention and differentiation into cardiovascular lineages. We propose this novel co-transplantation strategy for more efficient cell therapy of AMI which may function by providing an oxygen-rich microenvironment, and thus regulate cell survival and differentiation.


Assuntos
Infarto do Miocárdio , Oxigênio , Animais , Terapia Baseada em Transplante de Células e Tecidos , Infarto do Miocárdio/terapia , Ratos , Células-Tronco , Função Ventricular Esquerda
2.
iScience ; 24(1): 101973, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33458619

RESUMO

By screening 27,000 publicly available prokaryotic genomes, we recovered ca. 6300 type I and ca. 5200 type II putative L-asparaginase highlighting the vast potential of prokaryotes. Caspian water with similar salt composition to the human serum was targeted for in silico L-asparaginase screening. We screened ca. three million predicted genes of its assembled metagenomes that resulted in annotation of 87 putative L-asparaginase genes. The L-asparagine hydrolysis was experimentally confirmed by synthesizing and cloning three selected genes in E. coli. Catalytic parameters of the purified enzymes were determined to be among the most desirable reported values. Two recombinant enzymes represented remarkable anti-proliferative activity (IC50 <1IU/ml) against leukemia cell line Jurkat while no cytotoxic effect on human erythrocytes or human umbilical vein endothelial cells was detected. Similar salinity and ionic concentration of the Caspian water to the human serum highlights the potential of secretory L-asparaginases recovered from these metagenomes as potential treatment agents.

3.
J Tissue Eng Regen Med ; 14(12): 1939-1944, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32885899

RESUMO

Cell therapy has become a novel promising approach for improvement of cardiac functional capacity in the instances of ventricular remodeling and fibrosis caused by episodes of coronary artery occlusion and hypoxia. The challenge toward enhancing cell engraftment as well as formation of functional tissue, however, necessitated combinatorial approaches. Here, we complemented human embryonic stem cell-derived cardiac progenitor cell (hESC-CPC) therapy by heparin-conjugated, vascular endothelial growth factor (VEGF)-loaded fibrin hydrogel as VEGF delivery system. Transplantation of these cardiac committed cells along with sustained VEGF release could surpass the cardiac repair effects of each constituent alone in a rat model of acute myocardial infarction. The histological sections of rat hearts revealed improved vascularization as well as inclusion of hESC-CPC-derived cardiomyocytes, endothelial, and smooth muscle cells in host myocardium. Thus, co-transplantation of hESC-CPC and proangiogenic factor by a suitable delivery rate may resolve the shortcomings of conventional cell therapy.


Assuntos
Infarto do Miocárdio/terapia , Miocárdio/patologia , Transplante de Células-Tronco , Células-Tronco/citologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Preparações de Ação Retardada , Células-Tronco Embrionárias Humanas/citologia , Humanos , Infarto do Miocárdio/patologia , Células-Tronco/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...